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Figure 1. TetraDiffusion is a 3D denoising diffusion model that operates on a tetrahedral grid to enable the generation of high-resolution
3D shapes in seconds. All depicted meshes are shown without any postprocessing, hole-filling or smoothing.

Abstract

Probabilistic denoising diffusion models (DDMs) have
set a new standard for 2D image generation. Extending
DDMs for 3D content creation is an active field of research.
Here, we propose TetraDiffusion, a diffusion model that
operates on a tetrahedral partitioning of 3D space to en-
able efficient, high-resolution 3D shape generation. Our
model introduces operators for convolution and transpose
convolution that act directly on the tetrahedral partition,
and seamlessly includes additional attributes such as color.
Remarkably, TetraDiffusion enables rapid sampling of de-
tailed 3D objects in nearly real-time with unprecedented
resolution. It’s also adaptable for generating 3D shapes
conditioned on 2D images. Compared to existing 3D mesh
diffusion techniques, our method is up to 200 times faster
in inference speed, works on standard consumer hardware,
and delivers superior results.

1. Introduction

The growing demand for virtual content has sparked a wave
of research to automate the laborious and costly genera-
tion of 3D assets. At the heart of this endeavor lies the

* Equal contributions.

search for powerful and flexible 3D representations to en-
code, store and manipulate the geometry and topology of
3-dimensional objects. In this work, we describe a novel,
highly efficient generative model that is able to produce
high-quality surface meshes in seconds.

Following the rise of probabilistic denoising diffusion
models (DDMs) for image generation [9, 19, 36, 37, 43],
there have been several attempts to extend their genera-
tive capabilities to 3D [15, 26, 28, 53, 54]. It is relatively
straightforward to transfer the DDM principle — gradual
per-point perturbations with Gaussian noise — to voxels or
points in 3D space, and this has already lead to interest-
ing results [28, 53, 54]. However, these representations also
come with their own disadvantages. Voxels are a natural ex-
tension of 2D pixels and amenable to well-established neu-
ral architectures based on discrete 3D convolutional opera-
tors, yet they are notoriously memory-hungry and therefore
limited in terms of resolution. Point clouds, on the other
hand, are sampled irregularly and avoid unnecessary dis-
cretization of empty space, but they lack connectivity in-
formation and have no direct notion of the underlying sur-
faces. Both representations face additional challenges when
converting them to a surface mesh, as one must trade off
smoothing and loss of detail against surface noise and topo-
logical artifacts. An alternative could be to directly work
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with meshes, but handling explicit meshes is cumbersome
and restricted by the fixed surface topology.

Instead, we turn to a hybrid representation that combines
the advantages of both worlds, namely a tetrahedral decom-
position of 3D space. We develop neural operators that di-
rectly act on the tetrahedral representation, and thus allow
for fast and memory-efficient learning. This is in contrast to
methods that embed the tetrahedral representation in a voxel
grid of much higher resolution, thus inheriting the limita-
tions of voxel models [26]. Tetrahedral decompositions of
3D space have their origin in engineering and physics sim-
ulation and have also been used for volumetric modelling in
graphics [21, 32], but they have only recently been adopted
in the context of deep learning [12, 14, 41]. By combining
the flexibility and structure of the tetrahedral grid with the
generative power of DDMs, our model overcomes some of
the limitations of existing 3D diffusion frameworks. A key
ingredient of our method is a carefully predefined neigh-
borhood topology of the space-filling tetrahedral decompo-
sition [12] that enables well-defined convolutional operators
and makes it easy to extract a surface mesh with the help of
a differentiable Marching Tetrahedra scheme [14].

In the spirit of KPConv [45] and graph convolutions [3,
23, 48], we equip that representation with convolution (and
transposed convolution) kernels that operate directly on the
deformable tetrahedral structure. These operations make it
possible to construct a U-Net architecture [38] in the tetra-
hedralized space, which, in turn, is the computational core
of a denoising diffusion model. Our DDM learns to trans-
form random noise into a 3D object shape by predicting
both a per-vertex signed distance field and an individual per-
vertex displacement, depicted in Fig. 2.

Our formulation has several benefits. Like in a point
cloud, the vertices of the tetrahedral grid can be moved
around to align with a desired surface. But at the same time
they retain a uniquely defined neighborhood connectivity,
which ensures that one can readily extract a topologically
sound surface mesh, and obviates the need to train an addi-
tional surface reconstruction network [33]. Moreover, our
network can be deployed on a multi-resolution hierarchy of
tetrahedral decompositions, which makes both training and
inference memory-efficient and computationally affordable.
Empowered by the modest computational cost we are able
to run diffusion at a higher native resolution (in our experi-
ments >5 million tetrahedra, see Sec. 3) and to reconstruct
3D shapes with unprecedented detail. To further reduce
training time, our proposed tetrahedral convolution layers
make it possible to exploit sparsity by pruning tetrahedra in
unoccupied regions of 3D space. Going beyond purely geo-
metric object properties (captured by signed distance values
and vertex offsets), we extend the tetrahedral representa-
tion and the associated Marching Tetrahedra scheme [41] to
unrestricted feature vectors, such that it becomes possible

to diffuse and extract further attributes like color. The ex-
tended Marching Tetrahedra algorithm remains fully differ-
entiable. Consequently one can guide the diffusion during
inference, e.g. towards smoother shapes, larger or smaller
volume, or specific colors. Moreover one can drive the sam-
pled shapes to resemble existing examples, renderings or

textual descriptions, similar to classifier-free guidance [18]

and regularization [37]. In summary, our key contributions

are:

1. To the best of our knowledge, we propose the first 3D de-
noising diffusion model that operates entirely on a tetra-
hedral representation.

2. We design convolution operators and up- and downsam-
pling kernels on the tetrahedral grid.

3. We show that TetraDiffusion enables efficient training
and near real-time inference at unprecedented resolution,
on consumer hardware.

4. We extend our tetrahedral DDM to include color, and to
allow for 3D shape generation guided by images scraped
from the internet.

2. Related work

3D Generative Models. Compared to their 2D counter-
parts, 3D generative models have to chose among a wider
range of data representations. Most dominant are voxels
and point clouds, for which it is straightforward to adapt the
2D formulations [1, 51, 52]. Early work directly treats point
clouds as matrices to make them amenable to standard neu-
ral architectures [ 1 1], or rasterizes 3D data into a voxel grid
in order to apply conventional 3D convolutions [2, 50]. To
overcome fixed structures and to induce permutation invari-
ance, PointFlow [51] first samples from a shape distribution
and in a second step samples from the distribution of points
given the corresponding shape prior.

Another prominent stream of work relies on implicit rep-
resentations. The authors of [7] introduce an implicit field
decoder to learn a signed distance function. The network
is trained in adversarial fashion to predict the distance from
the surface when presented a point coordinate and its asso-
ciated feature encoding. In [4], shapes are represented as
gradient fields over the logarithmic surface density, taking
advantage of score-based generative models [43]. Similarly,
[1] learn a shape prior with an auto-encoder and GAN in la-
tent space. Our model does not rely on adversarial training
or latent interpolation, rather we train directly on input en-
codings.

A combination of explicit and implicit representations is
explored in GET3D [13]. Similar to our work, 3D shapes
are described via signed distances and deformation vectors
on a tetrahedral grid with fixed topology. Their tetrahedral
representation is encoded in separate triplane representa-
tions for geometry and texture that are trained in an adver-
sarial manner with rendering losses, making use of the dif-
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Figure 2. Exemplary reverse diffusion sequence starting from a noisy tetrahedral grid to a final texturized mesh in a few seconds.

ferentiable Marching Tetrahedra [41]. Instead of projecting
into triplanes, TetGAN [14] directly operates on the tetra-
hedralized cuboid with an auto-encoder, supervised with
ground truth features as well as global and local adversarial
losses. Somewhat similar to our work they define convo-
lutions and up-/ down-sampling operators on entire tetrahe-
dra, which in their setting is straightforward as each tetra-
hedron has exactly four neighbours. In contrast, we extend
those operations to act on vertices directly so as to allow for
displacements, in the spirit of DMTet [41]. Our more gen-
eral formulation naturally offers more flexibility and repre-
sentation power, since every vertex can be aligned individ-
ually in contrast to the tetrahedral occupancy field in Tet-
GAN, which only allows aligning a tetrahedron as a whole.

3D Diffusion Models. With the rise of DDMs, various
3D representations have been transferred to the diffusion
setting [28, 29, 53, 54]. Point-voxel diffusion incorpo-
rates a point-voxel CNN [54] to directly apply diffusion
on the hybrid representation. Similarly, [28] directly dif-
fuse point clouds conditioned on a latent shape represen-
tation generated with a normalizing flow. LION [53] uses
DDMs in latent space and maps the latent encoding back
to a point cloud with a VAE. By itself this generates noisy
point clouds, which is why they must train an additional net-
work [33] to turn those into smooth meshes. To circumvent
that extra surface extractor, 3DGen [15] introduces a two-
stage training pipeline consisting of a triplane VAE and a
separately trained latent diffusion model in triplane space.
Somewhat similarly, [42] first train a decoder that maps tri-
plane features to occupancy grids, then train a 2D diffusion
model to generate those triplanes. In contrast, our method
only requires single-stage training and no separate decoder,
by natively operating on the tetrahedral 3D representation.
Perhaps the closest work to ours is MeshDiffusion [26],
which also maps meshes to a deformable tetrahedral grid
and performs diffusion on that representation. However,
to circumvent the lack of convolutional operators for that
grid they embed the tetrahedra in a higher-resolution reg-
ular voxel grid. This makes it possible to employ conven-
tional 3D convolutions, but largely sacrifices the benefit of
the tetrahedral representation: the voxelization is extremely

inefficient, as it leads to a cubic increase in memory foot-
print and computation without adding any information. By
defining convolutions directly on the spatially sparse ver-
tices of the tetrahedral grid our model avoids that large over-
head and allows for a finer tetrahedralization that captures
higher-resolution details.

3. Background

Tetrahedral Grid. Following [41], we represent shapes
within a given cuboid 7 with a signed distance field and a
displacement field that are both defined on the vertices of
the same, space-filling tetrahedral decomposition of 7. We
refer to that structure as the tetrahedral grid, with vertices
Vr € RV*3 and tetrahedra T € N¥*4 An nearly regu-
lar decomposition can be found via close-packed tetrahedral
tiling with the A15 lattice [10]. Tetrahedral grid resolution
refers to the grid spacing used in the iso-surface stuffing al-
gorithm. A tetrahedralized cube of resolution R contains
0.72 - R? tetrahedra. Note that a given number of tetrahe-
dra can capture more detail than the same number of voxels,
as they can be deformed to better follow the surface. Each
tetrahedron T}, consists of four vertices {v1, Uk, Vk3, Uka }
and corresponding edges to form a simplex, i.e., the connec-
tivity is predefined and fixed during training and inference.
Each vertex is assigned a displacement A, and a signed dis-
tance value s,. The SDF provides an implicit surface rep-
resentation, whereas the displacements serve to precisely
align it with the actual object surface. Conveniently, one can
extract a surface mesh from 7 with Deep Marching Tetrahe-
dra (DMTet, [41]). In Section 4, we extend the tetrahedral
representation to arbitrary feature vectors, such that addi-
tional vertex attributes (e.g., color) can be propagated to the
final mesh.

Diffusion. Denoising diffusion models can be seen as re-
stricted, hierarchical Markovian VAEs [27] that learn to
approximate the data distribution p(x) with a sequence of
steps. In the variational formulation [20, 22] the steps are
indexed by a continuous time variable ¢ € [0, 1]. At the final
time step 7' = 1 the latent variables z should be normally
distributed, ¢(z7) = N(zr;0,I). The forward process of
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Figure 3. (a) Tetrahedral convolution for kernel size m = 16. The TetraConv kernel defines the ordering and padding for every lo-
cal neighborhood. The center vertex, where the convolution aggregates, is marked in red and the neighborhood in dark blue. Miss-
ing vertices (light blue) are padded with zeros. (b) Strided convolution H = TetraConv(A, B,C, D, E) and transposed convolution
K =TetraConv(F, G, H, I, J) accumulate information from the nearest neighbors in their preceding layers. Operators are depicted in 2D.

the marginals ¢(z¢|x) is Gaussian and given by

q(z¢|x) = N (z¢; ux, 071), (1)

2
where SNR(¢) = % is the signal-to-noise ratio, assumed to
t

decrease strictly monotonically in time, and «; and o7 are
strictly positive for all ¢. Consequently, z; will be increas-
ingly noisy over time. We fix a7 = 1 — o2, corresponding
to a variance-preserving process [44]. Under the Markov
assumption the forward transition kernels for ¢ > s are also
Gaussian and given by:

2

q(zt|zs) = N(Zt; at\sZS7Jt|sI)7 (2)

where oy, = §* and 07, = 0} — aj 02, A common
.

noise schedule is oy = cos(wt/2), which under variance
preservation leads to a signal-to-noise ratio of SNR(¢) =

We are interested in learning the reverse diffusion pro-
cess. While ¢(zs|z¢) is in general intractable as it requires
integration over the whole dataset, conditioning it on a data
sample z gives rise to a closed-form solution:

q(Zs‘Zt7 X) = N(Zs; ,Ufs,t(zta X)v Uf,tI)ﬂ 3)
_ O‘t\sag 0650‘3‘5 2 2 o’?
where 15 ¢(2¢,%X) = — 5>zt + —-xand 0%, = Ttls o2

As x is only available (tiuring trainting, it is replaced by a
neural network prediction X¢(zt;t) ~ x. An equivalent
interpretation of the denoising model is as a score model,
which in the infinite data limit coverges to the marginal dis-
tribution ¢(z¢) [43].
To train X4(z¢;¢) one optimizes the variational lower
bound of the marginal log-likelihood
1

“E . nom, [SNR'(1)||x — Ro(ze:)||2], @

L(x)=—
2 t~N(0,I)

where SNR'(t) = dSNR/dt and z; = a;x + oye. Instead
of parametrizing the model to directly recover x from its

corrupted version z¢, one can predict the noise ¢ and re-
cover X from X = zz - O't(%- Since that objective tends
to destabilize training near ¢t = 1, we use the more robust
v-parametrization [40], v; = o€, — o,X. Note that X =
ozt — 0¢Vy. Once trained, we can sample from our data
distribution with ancestral sampling. Setting ¢ ~ A(0,I),
we starting at z; ~ A(0,I) and iteratively denoise it ac-
cording to

2 03 o2 g2
O[tO'S s t\s ~ t‘s s
s = 5 Zt Xo(zg5t) + 5 &)
sUt t at

4. Tetrahedral Representation Learning

Tetra Convolution. Our displacement and signed dis-
tance fields are not directly amenable to regular 3D con-
volutions due to varying neighborhoods and connectivity in
the grid. However, the superimposed A15 lattice allows a
collision-free spatial ordering of vertices within each neigh-
borhood, and as such a well-defined, rigorous tetrahedral
convolution. This is in contrast to graph convolutions that
are invariant to the spatial configuration of the neighbor-
hood, and unlike KPConv [45], our approach eliminates the
need to search for the relevant points under the kernel and
subsequent distance weighting. We define our unique or-
dering, a discrete binning of the local edge orientations, by
iteratively clustering the set of all outgoing edges with k-
means until we find a collision-free ordering, i.e. no edges
within a neighborhood fall within the same bin. Interest-
ingly, in practice our clustering approach always converges
to a basis of at most m -+ 1 reference directions, where m is
the maximal neighborhood in the tetrahedral grid. In con-
trast to 3D voxel convolutions, the total number of basis
directions is almost half the size (e.g. 15 compared to 26),
highlighting one key ingredient to efficient learning. A con-
cise description of our approach can be found in Sec. C.1.
With fixed ordering, it is straightforward to define the
result of a tetrahedral convolution layer [ at a given vertex
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Figure 4. 3D shape interpolation. We first generate the leftmost and rightmost samples and save the noise applied in every diffusion step.
Intermediate shapes are then generated by spherical linear interpolation of the noise.

vy, as a weighted sum over itself and its neighborhood N,
in layer (I — 1):

m—+1
O = Wodh '+ Y Lien,, W04, (6)

j=1

where W; are the weights of the kernel and @i)i the feature
vector of v; in layer [. As illustrated in Fig. 3a, the vary-
ing size of the neighborhood simply corresponds to zero
padding the corresponding kernel. This layer is referred
to as TetraConv. To fully exploit the power of convolu-
tional learning, we need to define down- and upsampling
operations on the tetrahedral grid. We construct tetrahedral
tesselations of our cuboid 7 of varying resolution and es-
tablish parent-child relations between vertices in adjacent
hierarchy levels via k-nearest neighbor relations. As shown
in Figure 3b, this enables flexible down- and upsampling
rates corresponding to strided convolution and transposed
convolution. In particular, the neighborhood in Eq. (6) gets
replaced by the knn-neighborhood of the lower or higher
tetrahedral resolution.

Grid Pruning. Like any volumetric tesselation, the tetra-
hedral grid is in most cases sparsely populated, reflecting
the fact that only a small part of 3D space lies near an object
surface. Unlike voxel-based convolutions, where only axis-
parallel cropping is efficient (in particular limited to the
bounding box), our tetrahedral formalism facilitates prun-
ing in a more targeted manner. Deleting all unoccupied ver-
tices and their corresponding connections translates to two
simple operations: (1) unused vertices are completely re-
moved by deleting the corresponding row in the unfolded
kernel-data matrix and (2) removed connections lead to ad-
ditional zero padding in affected rows. As a result, we can
truncate our grid to the convex hull of all data used in a loss-
less manner. Additionally, training and inference speed and
memory consumption is easily further enhanced by (lossy)

pruning vertices that are occupied only up to a user-defined
number of times. A full description of the pruning method-
ology can be found in Sec. C.4.

Tetrahedral Diffusion. With all necessary building
blocks at hand, we can now introduce our tetrahedral diffu-
sion. We directly diffuse in deformable tetrahedral space,
i.e. our basic input consists of IV vertices with features
{54, Ay}, and the associated neighborhood relations. How-
ever, we can seamlessly extend the hybrid tetrahedral rep-
resentation by any vertex feature vector, in particular color
and texture information and without loosing the differentia-
bility of the marching tetrahedra algorithm. In particular,
surface information like color is a convex combination of
the corresponding tetrahedral vertex features. In our exper-
iments we therefore directly diffuse SDF values, deforma-
tion vectors and color vectors per vertex, i.e. { sy, Ay, ¢y}

Our network largely adheres to the standard U-Vit ar-
chitecture of many diffusion models [20], of course with
the tetrahedral convolution operators introduced above, i.e.,
residual convolution layers, with group normalization [49],
SiLU activations [17] and attention layers in between. The
entire network, hyperparameters and our tetrahedral march-
ing extension are described in Sec. C.3.

5. Experiments

We now experimentally demonstrate the capabilities of
TetraDiffusion. We train and evaluate our method on the
classes airplane, bike, car and chair from the ShapeNet [5]
dataset, using the official ShapeNet train/val/test split. Each
shape is individually normalized to lie in [—1, 1]. Our net-
work requires SDFs and displacement fields on a tetrahedral
grid, i.e., ShapeNet meshes have to be converted to that for-
mat. We adapt the rendering pipeline of [30] and fit each
shape individually into the grid with a combination of ren-
dering and volumetric losses. Similar to [26], the ground



1-NNA | MMD | COV 1

Category Method CD EMD CD EMD CD EMD
GET3D [13] 93.1£06 759416 042 £0.01 0.52 £0.01 37.8+£ 1.2 440409
Airplane MD [26] 89.2£0.8 89.24+0.7 0.64 £0.04 0.75£0.01 325+1.7 358=+1.0
P Ours 719+15 683+14 0.30 = 0.01 0.49 £0.01 482+09 478+12
Oursy, 73.1+1.1 734+14 0.34 +£0.01 0.524+0.01 445+ 17 465+1.2
GET3D [13] 72.7+3.0 68.8+6.1 1.65+0.04 1.18+0.05 40.7+4.8 478 +48
Bike MD [26] 61.7 53 652 +6.0 1.62 £0.13 1.18 £0.07 422 +53 493+£59
Ours 62.6 47 657+5.6 1.71 £0.07 117 £0.05 457+54 52.7+59
Oursy, 659 +57 684+5.1 1.82 +£0.11 1.22 £0.06 477+49 545+5.1
GET3D [13] 87.3£0.7 73.6+0.8 1.03 £0.01 0.72 £0.01 209+14 342+1.1
Car MD [26] 68.6 1.6 667+£25 093 +0.01 0.69=£0.01 35112 423+1.1
Ours 685+09 611+14 0.90 +0.01 0.64 £ 0.01 361+16 413+1.6
Oursp, 671+11 614+13 091 +£0.01 0.65+0.01 35615 39.7+13
GET3D [13] 764 +£06 729+0.8 531 +£0.04 2.56+0.01 31.8£0.6 340404
Chair MD [26] 73.0+£1.0 79.84+0.9 518 £0.12 2.79 +£0.02 382+1.0 352409
Ours 62.0 0.6 61.2+09 494 +0.11 247 +0.03 462 +0.6 475+0.38

Table 1. Generation metrics on ShapeNet classes airplane, bike, car and chair. MMD-CD is multiplied by x 10, EMD by x102.

truth is created in two step procedure, fixing SDF values to
{-=1,1}. For a comprehensive overview of the entire pre-
processing protocol, please refer to the supplementary ma-
terial.

5.1. Qualitative results

Unconditional generation. Figure 1 showcases a diverse
array of randomly generated 3D shapes, demonstrating the
high quality and level of detail of our model. Note the di-
versity of shapes within each class, and the intricate details
like chains and brake discs on motorbikes or propellers and
wing appendages on airplanes. The motorbikes nicely illus-
trate the model’s generative abilities: although the training
set is small (= 200 examples), the model goes beyond mem-
orization and naive interpolation. It seamlessly blends parts
of different training samples into plausible assemblies, and
comes up with curious designs clearly not observed dur-
ing training. It is noteworthy that, although further post-
processing is a common practice in the context of 3D gen-
erative models, our generated shapes are not post-processed
or cleaned in any way, as e.g. smoothing would remove fine
structures and high-frequency details correctly synthesized
by our model.

Qualitative comparison. Figure 5 compares TetraD-
iffusion against other recent mesh generators, namely
GET3D [13] and MeshDiffision (MD) [26]. We train all
methods with resolution R = 128 on the ShapeNet train-

ing split. Additionally, we also train a hi-res version of our
model with R = 192 denoted by Oursy,, which is not feasi-
ble for MD because it would exceed current hardware limi-
tations on a single GPU (see also Tab. 2). The figure depicts
examples from a large pool of generated shapes, matched
across methods by finding the nearest neighbors to a given
ground truth example from the test set. As general trends,
we observe that (i) the GAN-based GET3D produces nois-
ier shapes and has a tendency to hallucinate implausible
shape details; (ii) TetraDiffusion tends to generate cleaner
and more detailed shapes already at resolution R = 128:
crease edges and small structures are crisper, while smooth
surfaces have fewer bumps and holes; (iii) our hi-res version
with R = 192 clearly improves shape quality compared to
the standard R = 128, supporting our claim that resolution
is still a bottleneck: current 3D diffusion models run into
hardware limits, and efficient use of memory and compute
matters.

Interpolation. In Figure 4, we explore the latent shape
space learned by our model. We can directly interpolate be-
tween two different shape instances using spherical interpo-
lation to blend from start to end noise. Then, we feed the in-
termediate versions into the diffusion model to generate the
corresponding meshes. The geometric integrity of the inter-
mediate samples and the plausible, gradual transitions from
start to end suggest that the model has indeed learned to dis-
entangle objects along functionally meaningful dimensions,
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Figure 5. Comparison of different methods, red circles show en-
larged highlights. Samples were collected by searching for the
nearest neighbour to the ground truth. Ground truth samples are
chosen from the test split. Best viewed when zoomed in.

and to represent them in terms of those components.

Conditional Generation. Our network can be seamlessly
extended to conditional generation. We render multiple
views for each ShapeNet shape and embed the images into
CLIP space [35]. We expand our U-Net with additional
cross-attention layers [6] and add the result to the output of
the corresponding self-attention layer. We train our model
conditioning on the shapes’ CLIP embeddings. At test time,
we can then reconstruct faithful meshes from novel, unseen
images by simply conditioning on the corresponding em-
bedding. This effectively allows single-view reconstruction
(SVR). We qualitatively show SVR results from RGB data
in Fig. 6. Notably, the conditional model of TetraDiffusion,
which is trained across all classes together, effectively dis-
cerns between diverse shapes and classes, and exhibits a
strong adaptability to color variations.

5.2. Quantitative results

Metrics. We quantitatively evaluate our model in terms of
1-nearest neighbor accuracy (INNA), as proposed by Yang
et al. [51], as well as minimum matching distance (MMD)
and coverage (COV). All three latter metrics are computed

between the ground truth test set' and an equally large set
of generated samples, and are based on pairwise distances
between shapes. Since those distances are computed from
point sets, we uniformly resample all (generated and ground
truth) meshes into point clouds of size 2048 using the outer
object surface only. Like [53], we compute all metrics based
on both Earth Mover’s Distance (EMD) and Chamfer Dis-
tance (CD).

1-NNA measures the distributional discrepancy between
two sets of point clouds: it finds the nearest neighbor for
every generated sample and counts how often that near-
est neighbor is another generated sample, respectively a
ground truth sample. A value close to 50% is considered
optimal: higher values mean that generated samples are far
from the ground truth, indicating underfitting; lower values
mean that the model mostly replicates ground truth sam-
ples, indicating overfitting. MMD measures the average
distance from a generated sample to the nearest reference
sample, as a proxy for fidelity to the ground truth shape
space. COV quantifies what portion of reference samples
are nearest neighbors to some generated sample, i.e., higher
values mean that a larger part of the ground truth variability
is covered by the generator.

We benchmark our model against the state-of-the-art
3D mesh generators, GET3D [13] and MeshDiffusion
(MD) [26]. To get a meaningful and consistent compari-
son, we make sure that all models are evaluated with the
same train/test split. To that end, we retrained all meth-
ods on the official ShapeNet training part. We sample 1000
shapes for each category and average ten runs with random
splits equal the test set size. As demonstrated in Table 1, our
method fares very well in the direct comparison. It achieves
the best 1-NNA scores (i.e., it comes closest to 50) for 3
out of 4 object classes in terms of EMD and CD. We also
achieve the highest COV scores in all cases, and the lowest
MMD in all cases but one (CD for motorbikes).

Training Inference

Method GPU (GB) Speed (it/sy GPU (GB)  Speed (s/shape)
GET3D 13.3 0.10 11.3 0.83

MD 76.6 0.5 29.2 (22.6")  714.3 (526.37)
Ours* 12.0 2.8 7.4 3.4

Ours 20.8 1.0 9.7 11.2
Oursy,* 20.9 1.2 11.7 9.1
Oursy, 78.2 0.3 42.1 333

Table 2. Memory consumption and computing time of different
generative shape models. T We implement 16-bit inference in MD
for fair comparison. Our methods labelled with a * are pruned
versions, highlighting the efficiency boost of our tetrahedral for-
mulation. Full details in Appendix.

'We follow literature [51, 53] and use the validation split of ShapeNet
as the test set, which has not been used during training.
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Figure 6. Conditional generation of 3D shapes. TetraDiffusion is conditioned on the CLIP embeddings of images in the wild during
inference, while only trained on embeddings from rendered ShapeNet views. The shapes are displayed in matched pairs, with the upper
image illustrating the condition and the lower image showcasing the corresponding generated mesh.

5.3. Efficiency

A central aspect of our approach is its efficiency. We ar-
gue that, despite the rapid development of GPU hardware,
3D generative models are at present held back by hard-
ware limits, especially GPU memory (but also training time
could become prohibitive when scaling current models up
to industrial scale). In other words, a lighter and more ef-
ficient design makes 3D generative models not only faster
and cheaper, but also yields results of higher quality.

By performing convolution natively on the tetrahedral
grid, we can avoid overlaying a higher-resolution voxel grid
as done, for instance, in MeshDiffusion. What is more,
the voxel grid implies convolution kernels with at least
3 x 3 x 3 = 27, whereas our operator works well with only
16 neighbors. This, in turn, makes it possible to increase
the network capacity under the same hardware constraints.
For instance TetraDiffusion can, due to its maller memory
footprint, use 1028 feature channels in the bottleneck, and
can also be run at higher resolution (see above).

Table 2 compares the computational demands of differ-
ent 3D generative models. Our peak memory consumption
at resolution R = 128 (with batch size 1) is 20.8 GB, in
contrast to MeshDiffusion’s 76.6 GB. Pruning the data cube
as described in Section 4 further reduces memory usage to
12GB, without compromising prediction quality. Even at
high resolution R = 192, and assuming that shape vari-
ability is so large that no significant pruning is possible,
our model consumes less than 80 GB and can be run on
a single high-end GPU. As a consequence, TetraDiffusion
is also significantly faster. Inference time lies at about one
shape per three seconds, getting close to GAN-based infer-

ence time and about 200x faster than MeshDiffusion on the
same hardware.

Furthermore, the time-continuous formulation of our dif-
fusion model provides the flexibility to vary sampling steps
during inference. In other words, we are not constrained to
a fixed number of steps, such as sampling with 1000 time
steps. In our experimentation, detailed in the supplementary
material, we explore the range of steps and demonstrate that
we can successfully diffuse meshes within 32 steps without
compromising quality.

6. Conclusion

We present TetraDiffusion, an innovative 3D diffusion
framework capable of generating high-resolution, colorized
meshes with arbitrary topology and unprecedented resolu-
tion. To our knowledge, our work is the first 3D diffusion
model that fully operates on a tetrahedral data structure,
enabling highly efficient training and sampling processes.
Through our experiments, we have showcased the ability
of diffusion on the tetrahedral grid to synthesize diverse 3D
shapes, incorporating attributes such as color and conditions
based on CLIP features.

We believe a promising avenue for further exploration
is to better leverage the extended differentiable tetrahedral
marching algorithm and differentiable rendering [24, 30].
This approach aims to overcome the constraints of lim-
ited 3D assets and seamlessly integrate extensive 2D data
into the framework. Moreover, TetraDiffusion is presently
trained exclusively on objects. Nevertheless, the sparse na-
ture of scenes represents a logical extension for our frame-
work.
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